BFGMiner - a modular ASIC/FPGA Bitcoin miner

Aeon

Aeon (AEON) is a private, secure, untraceable currency. You are your bank, you control your funds, and nobody can trace your transfers.
[link]

Mining ERC-918 Tokens (0xBitcoin)

GENERAL INFORMATION

0xBitcoin (0xBTC) is the first mineable ERC20 token on Ethereum. It uses mining for distribution, unlike all previous ERC20 tokens which were assigned to the contract deployer upon creation. 0xBTC is the first implementation of the EIP918 mineable token standard (https://eips.ethereum.org/EIPS/eip-918), which opened up the possibility of a whole new class of mineable assets on Ethereum. Without any ICO, airdrop, pre-mine, or founder’s reward, 0xBitcoin is arguably the most decentralized asset in the Ethereum ecosystem, including even Ether (ETH), which had a large ICO.
The goal of 0xBitcoin is to be looked at as a currency and store of value asset on Ethereum. Its 21 million token hard cap and predictable issuance give it scarcity and transparency in terms of monetary policy, both things that Ether lacks. 0xBitcoin has certain advantages over PoW based currencies, such as compatibility with smart contracts and decentralized exchanges. In addition, 0xBTC cannot be 51% attacked (without attacking Ethereum), is immune from the “death spiral”, and will receive the benefits of scaling and other improvements to the Ethereum network.

GETTING 0xBITCOIN TOKENS

0xBitcoin can be mined using typical PC hardware, traded on exchanges (either decentralized or centralized) or purchased from specific sites/contracts.

-Mined using PC hardware

-Traded on exchanges such as


MINING IN A NUTSHELL

0xBitcoin is a Smart Contract on the Ethereum network, and the concept of Token Mining is patterned after Bitcoin's distribution. Rather than solving 'blocks', work is issued by the contract, which also maintains a Difficulty which goes up or down depending on how often a Reward is issued. Miners can put their hardware to work to claim these rewards, in concert with specialized software, working either by themselves or together as a Pool. The total lifetime supply of 0xBitcoin is 21,000,000 tokens and rewards will repeatedly halve over time.
The 0xBitcoin contract was deployed by Infernal_Toast at Ethereum address: 0xb6ed7644c69416d67b522e20bc294a9a9b405b31
0xBitcoin's smart contract, running on the Ethereum network, maintains a changing "Challenge" (that is generated from the previous Ethereum block hash) and an adjusting Difficulty Target. Like traditional mining, the miners use the SoliditySHA3 algorithm to solve for a Nonce value that, when hashed alongside the current Challenge and their Minting Ethereum Address, is less-than-or-equal-to the current Difficulty Target. Once a miner finds a solution that satisfies the requirements, they can submit it into the contract (calling the Mint() function). This is most often done through a mining pool. The Ethereum address that submits a valid solution first is sent the 50 0xBTC Reward.
(In the case of Pools, valid solutions that do not satisfy the full difficulty specified by the 0xBitcoin contract, but that DO satisfy the Pool's specified Minimum Share Difficulty, get a 'share'. When one of the Miners on that Pool finds a "Full" solution, the number of shares each miner's address has submitted is used to calculate how much of the 50 0xBTC reward they will get. After a Reward is issued, the Challenge changes.
A Retarget happens every 1024 rewards. In short, the Contract tries to target an Average Reward Time of about 60 times the Ethereum block time. So (at the time of this writing):
~13.9 seconds \* 60 = 13.9 minutes
If the average Reward Time is longer than that, the difficulty will decrease. If it's shorter, it will increase. How much longer or shorter it was affects the magnitude with which the difficulty will rise/drop, to a maximum of 50%. * Click Here to visit the stats page~ (https://0x1d00ffff.github.io/0xBTC-Stats) to see recent stats and block times, feel free to ask questions about it if you need help understanding it.

MINING HARDWARE

Presently, 0xBitcoin and "Alt Tokens" can be mined on GPUs, CPUs, IGPs (on-CPU graphics) and certain FPGAs. The most recommended hardware is nVidia graphics cards for their efficiency, ubiquity and relatively low cost. As general rules, the more cores and the higher core frequency (clock) you can get, the more Tokens you will earn!
Mining on nVidia cards:
Mining on AMD cards:
Mining on IGPs (e.g. AMD Radeon and Intel HD Graphics):
Clocks and Power Levels:

MINING SOFTWARE AND DESCRIPTIONS

For the most up-to-date version info, download links, thread links and author contact information, please see this thread: https://www.reddit.com/0xbitcoin/comments/8o06dk/links_to_the_newestbest_miners_for_nvidia_amd/ Keep up to date for the latest speed, stability and feature enhancements!
COSMiC Miner by LtTofu:
SoliditySha3Miner by Amano7:
AIOMiner All-In-One GPU Miner:
TokenMiner by MVis (Mining-Visualizer):
"Nabiki"/2.10.4 by Azlehria:
~Older Miners: Older and possibly-unsupported miner versions can be found at the above link for historical purposes and specific applications- including the original NodeJS CPU miner by Infernal Toast/Zegordo, the '1000x' NodeJS/C++ hybrid version of 0xBitcoin-Miner and Mikers' enhanced CUDA builds.

FOR MORE INFORMATION...

If you have any trouble, the friendly and helpful 0xBitcoin community will be happy to help you out. Discord has kind of become 0xBTC's community hub, you can get answers the fastest from devs and helpful community members. Or message one of the community members on reddit listed below.
Links
submitted by GeoffedUP to gpumining [link] [comments]

Best $100-$300 FPGA development board in 2018?

Hello, I’ve been trying to decide on a FPGA development board, and have only been able to find posts and Reddit threads from 4-5 years ago. So I wanted to start a new thread and ask about the best “mid-range” FGPA development board in 2018. (Price range $100-$300.)
I started with this Quora answer about FPGA boards, from 2013. The Altera DE1 sounded good. Then I looked through the Terasic DE boards.
Then I found this Reddit thread from 2014, asking about the DE1-SoC vs the Cyclone V GX Starter Kit: https://www.reddit.com/FPGA/comments/1xsk6w/cyclone_v_gx_starter_kit_vs_de1soc_board/‬ (I was also leaning towards the DE1-SoC.)
Anyway, I thought I better ask here, because there are probably some new things to be aware of in 2018.
I’m completely new to FPGAs and VHDL, but I have experience with electronics/microcontrollers/programming. My goal is to start with some basic soft-core processors. I want to get some C / Rust programs compiling and running on my own CPU designs. I also want to play around with different instruction sets, and maybe start experimenting with asynchronous circuits (e.g. clock-less CPUs)
Also I don’t know if this is possible, but I’d like to experiment with ternary computing, or work with analog signals instead of purely digital logic. EDIT: I just realized that you would call those FPAAs, i.e. “analog” instead of “gate”. Would be cool if there was a dev board that also had an FPAA, but no problem if not.
EDIT 2: I also realized why "analog signals on an FPGA" doesn't make any sense, because of how LUTs work. They emulate boolean logic with a lookup table, and the table can only store 0s and 1s. So there's no way to emulate a transistor in an intermediate state. I'll just have play around with some transistors on a breadboard.
UPDATE: I've put together a table with some of the best options:
Board Maker Chip LUTs Price SoC? Features
icoBoard Lattice iCE40-HX8K 7,680 $100 Sort of A very simple FPGA development board that plugs into a Raspberry Pi, so you have a "backup" hard-core CPU that can control networking, etc. Supports a huge range of pmod accessories. You can write a program/circuit so that the Raspberry Pi CPU and the FPGA work together, similar to a SoC. Proprietary bitstream is fully reverse engineered and supported by Project IceStorm, and there is an open-source toolchain that can compile your hardware design to bitstream. Has everything you need to start experimenting with FPGAs.
iCE40-HX8K Breakout Board Lattice iCE40-HX8K-CT256 7,680 $49 No 8 LEDs, 8 switches. Very similar to icoBoard, but no Raspberry Pi or pmod accessories.
iCE40 UltraPlus Lattice iCE40 UltraPlus FPGA 5280 $99 No Chip specs. 4 switchable FPGAs, and a rechargeable battery. Bluetooth module, LCD Display (240 x 240 RGB), RGB LED, microphones, audio output, compass, pressure, gyro, accelerometer.
Go Board Lattice ICE40 HX1K FPGA 1280 $65 No 4 LEDs, 4 buttons, Dual 7-Segment LED Display, VGA, 25 MHz on-board clock, 1 Mb Flash.
snickerdoodle Xilinx Zynq 7010 28K $95 Yes Xilinx Zynq 7-Series SoC - ARM Cortex-A9 processor, and Artix-7 FPGA. 125 IO pins. 1GB DDR2 RAM. Texas Instruments WiLink 8 wireless module for 802.11n Wi-Fi and Bluetooth 4.1. No LEDs or buttons, but easy to wire up your own on a breadboard. If you want to use a baseboard, you'll need a snickerdoodle black ($195) with the pins in the "down" orientation. (E.g. The "breakyBreaky breakout board" ($49) or piSmasher SBC ($195)). The snickerdoodle one only comes with pins in the "up" orientation and doesn't support any baseboards. But you can still plug the jumpers into the pins and wire up things on a breadboard.
numato Mimas A7 Xilinx Artix 7 52K $149 No 2Gb DDR3 RAM. Gigabit Ethernet. HDMI IN/OUT. 100MHz LVDS oscillator. 80 IOs. 7-segment display, LEDs, buttons. (Found in this Reddit thread.)
Ultra96 Xilinx Zynq UltraScale+ ZU3EG 154K $249 Yes Has one of the latest Xilinx SoCs. 2 GB (512M x32) LPDDR4 Memory. Wi-Fi / Bluetooth. Mini DisplayPort. 1x USB 3.0 type Micro-B, 2x USB 3.0 Type A. Audio I/O. Four user-controllable LEDs. No buttons and limited LEDs, but easy to wire up your own on a breadboard
Nexys A7-100T Xilinx Artix 7 15,850 $265 No . 128MiB DDR2 RAM. Ethernet port, PWM audio output, accelerometer, PDM microphone, microphone, etc. 16 switches, 16 LEDs. 7 segment displays. USB HID Host for mice, keyboards and memory sticks.
Zybo Z7-10 Xilinx Zynq 7010 17,600 $199 Yes Xilinx Zynq 7000 SoC (ARM Cortex-A9, 7-series FPGA.) 1 GB DDR3 RAM. A few switches, push buttons, and LEDs. USB and Ethernet. Audio in/out ports. HDMI source + sink with CEC. 8 Total Processor I/O, 40 Total FPGA I/O. Also a faster version for $299 (Zybo Z7-20).
Arty A7 Xilinx Artix 7 15K $119 No 256MB DDR3L. 10/100 Mbps Ethernet. A few switches, buttons, LEDs.
DE10-Standard (specs) Altera Cyclone V 110K $350 Yes Dual-core Cortex-A9 processor. Lots of buttons, LEDs, and other peripherals.
DE10-Nano Altera Cyclone V 110K $130 Yes Same as DE10-Standard, but not as many peripherals, buttons, LEDs, etc.

Winner:

icoBoard ($100). (Buy it here.)
The icoBoard plugs into a Raspberry Pi, so it's similar to having a SoC. The iCE40-HX8K chip comes with 7,680 LUTs (logic elements.) This means that after you learn the basics and create some simple circuits, you'll also have enough logic elements to run the VexRiscv soft-core CPU (the lightweight Murax SoC.)
The icoBoard also supports a huge range of pluggable pmod accessories:
You can pick whatever peripherals you're interested in, and buy some more in the future.
Every FPGA vendor keeps their bitstream format secret. (Here's a Hacker News discussion about it.) The iCE40-HX8K bitstream has been fully reverse engineered by Project IceStorm, and there is an open-source set of tools that can compile Verilog to iCE40 bitstream.
This means that you have the freedom to do some crazy experiments, like:
You don't really have the same freedom to explore these things with Xilinx or Altera FPGAs. (Especially asynchronous circuits.)

Links:

Second Place:

iCE40-HX8K Breakout Board ($49)

Third Place:

numato Mimas A7 ($149).
An excellent development board with a Xilinx Artix 7 FPGA, so you can play with a bigger / faster FPGA and run a full RISC-V soft-core with all the options enabled, and a much higher clock speed. (The iCE40 FPGAs are a bit slow and small.)
Note: I've changed my mind several times as I learned new things. Here's some of my previous thoughts.

What did I buy?

I ordered a iCE40-HX8K Breakout Board to try out the IceStorm open source tooling. (I would have ordered an icoBoard if I had found it earlier.) I also bought a numato Mimas A7 so that I could experiment with the Artix 7 FPGA and Xilinx software (Vivado Design Suite.)

Questions

What can I do with an FPGA? / How many LUTs do I need?

submitted by ndbroadbent to FPGA [link] [comments]

About reducing the BCH block time, I have something to say...

I want to introduce myself by first (to avoid to be considered to be troll).
My name is Danny, Chinese, my first contact with Bitcoin was in 2013. My background is integrated circuit design. I studied C/C++ and linux in the college 15 years ago. I am not very familiar with open source software design, but my technology background is good enough to let me learn things quickly. I have developed a FPGA based SHA-256 miner and succesfully connect to the Eligius pool in early 2014 (Just for fun), all by C and verilog. I am a developer but not a professional software developer.
I am familiar with Bitcoin, transaction and block structure. I developed a program which can upload and download arbitrary file from/to the Bitcoincash blockchain. The downloader code is open sourced: https://github.com/bchfile/BCHFILE-extractor
I think I am not a troll.
Although many users and devs think Blocktime is not an issue, but a simple fact is that there is no single mainstream crypto choose a blocktime equal or larger than 10 minutes (No offense to anyone, I just express the idea that this is an undeniable proof that a shortter confirmation time has real needs).
For wallet users: If someone send me some BCH, although 0-conf gives some confidence, but I still need to wait for at least 1 confirmation to "make sure" someone else is not cheeting me (not 100%, but 1 confirm really means something), each more confirmation makes more confidence.
For nodes: You cannot spend a unconfirmed UTXO by default, you need to list the unspent UTXO and use createrawtransaction, signrawtransaction to manually create the TX and broadcast it. That means you need to wait for the TX to be confirmed before spend it by default.
Variance: (Here, I want to say sorry to many people especially some devs, in the previous posts, I did not show enough respect to them. In fact, the developers have done a lot of excellent work, most of which are unpaid, but not well known to the public.) The Variance is already been discussed by devs a long time, bobtail algorithm is a potential alternative, I have not figure it out by now, but reduce the block time can achieve a similar result, it's simple, 10 1-min block have an averagy effect, it has much less variance than 1 10-min block.
For exchanges: Obviously the exchanges plays the most important role in the crypto eco-system. Exchanges usually run "official" bitcoin cash nodes (bitcoin-abc), change the block time does not affect them (because the RPC call is not changed), the only affection is that they need to increase the confirmation numbers for deposit.
For developers: They need to upgrade the software before the HF just as the previous ones. Although change the blocktime is a major change, but in Code, the changes are rare, only a few lines of codes are affected for the core functions. (To approve this, I created a Bitcoin-abc fork in github, modified the blocktime to 2-min and reduce the subsidy to 1/5 at the same time, all the changes canbe seen here: https://github.com/Danyu-Wu/bitcoin-abc/commit/884414a04884a462c8e424ab1bde2fe632f59591). I spend 1 week to study the source code, and spend 2 days to complete the modification (Changes for test-code and some non-core functions are not completed yet), and 3 days for run the test (includes run a pool and connect to the testnet, in here you can find the blocks I mined in the testnet: https://www.blocktrail.com/tBCC/address/mmBG7ReKgGQgqhSZQjR28NvVDfeekjpnpV). I am not a professional programmer but can finish the core changes within 2-weeks, so it is clear that the change does not need much work.
----------------------------------------------------
In summary, I think change the blocktime maybe not the perfect consensus change for BCH, but that is the simplest one to improve the user experience significantly.
BTW: Anyone, especially developers who are interested in this topic, you can find the telegram group link here: https://github.com/Danyu-Wu/blocktime/blob/masteworkgroup.md
submitted by wudanyu to btc [link] [comments]

What is SUQA project – How to mine SUQA coin

What is SUQA project – How to mine SUQA coin
SUQA coin is fast (533 Transactions per second) and almost No Transaction Fees. This makes it unique comparing with other projects.
SUQA is a new digital currency that has a new X22i POW algo. X22i algo is not a copy or clone of any old one but it is completely ASIC, FPGA and Quantum Resistant.
SUQA project also have a newest feature that u can 5% apr interest from term deposits even if the wallet is offline.
SUQA project aims to create the hub with SUQA payments and without taking any fees.
SUQA has a unique time-lock interest system for every user to earn deposits from their wallets without technical knowledge.
Since SUQA project is a new, unique ASIC, FPGA, Quantum resistant algorithm is very helpful for the mining community and solves numerous problems for miners. For example if you have a one GPU or only one rig you will be able to mine to the last block of SUQA without comparing any ASIC or FPGA device because SUQA will renew the algo every 6 months.
In real life SUQA will support the its community by foundation activities like mining, donations, bounty campaigns. ect.SUQA coin can be mined by GPUs (Nvidia and AMD) and CPUs. But it is only possible to mine it profitable by GPUs. SUQA unique X22i algo is also energy efficient and make your GPUs to less heat.
How To Mine SUQA coin
To mine SUQA coin 1) you need to find a miner software based on the GPU you have. 2) Download wallet and get a SUQA wallet address. 3) And then select a good pool.
Suqa Coin Algo: X22i
MINER:
– AMD:zjazz_amd_minerhttps://github.com/zjazz/zjazz_amd_minereleases
– NVIDIA:ccminer x22i win64 binary releasehttps://github.com/SUQAORG/ccminer-x22i/releases
zjazz_cuda_minerhttps://github.com/zjazz/zjazz_cuda_minereleases/tag/1.0
Trexhttps://bitcointalk.org/index.php?topic=4432704.0
Example for trex miner .bat code:t-rex.exe -a x22i -o stratum+tcp://suqa-pool.beepool.org:9504 -u YourSUQAWallet.WorkerName -p c=SUQA -R 3

https://preview.redd.it/3k92xaieh8221.jpg?width=757&format=pjpg&auto=webp&s=5b5d8259fd9847a9c003187ed7f8fa5ae14e5de2

SUQA coin hashrate, SUQA coin mining performance

Nvidia GTX 1070 – 6.4MH/s (Gigabyte GTX 1070 OC )– Nvidia GTX 1070 Ti – 7.5 Mh/s (Gigabyte GTX 1070Ti OC )– Nvidia GTX 1080Ti – 11.5 Mh/s (MSI GTX 1080Ti)
– AMD RX580 – 3.2 Mh/s (Sapphire RX 580)

SUQA coin Mining Profitability

Mining SUQA coin you will get this: SUQA price is now ~ $0,005546 (138 satoshi)
– 120 SUQA / GTX 1080Ti daily– 75 SUQA / GTX 1070 Ti daily– 65 SUQA / 7x GTX 1070 daily
SUQA coin Mining Pools: https://bsod.pw https://icemining.ca https://beepool.org/coindetail/suqaand for more pools https://discord.gg/ArttaNA
SUQA coin Difficulty: 8824.28235 @ block 22 179
SUQA coin block reward: 5000
SUQA coin Exchange Markets:Suqa coin is now on
Official Exchanges – Check on CoinMarketCap
  1. Escodexhttps://wallet.escodex.com/market/ESCODEX.SUQACOIN_ESCODEX.BTC
  2. Stexhttps://app.stex.com/en/basic-trade/paiBTC/SUQA/1D
  3. QBTChttps://www.myqbtc.com/trade
And Crypto-Bridge is on the wayhttps://wallet.crypto-bridge.org/market/BRIDGE.SUQA_BRIDGE.BTC
Website: https://suqa.org
Whitepaper: https://suqa.org/file/2018/10/suqa-whitepaper.pdf
BitcoinTalk: https://bitcointalk.org/index.php?topic=5038269.0
GitHub: https://github.com/SUQAORG
Twitter: https://twitter.com/SUQAfoundation
Facebook: https://facebook.com/SUQAFoundation
Discord: https://discord.gg/ArttaNA
Author: uk baxoi
profile: https://bitcointalk.org/index.php?action=profile;u=2364181
submitted by mahdi32 to gpumining [link] [comments]

DAG Technology Analysis and Measurement

The report produced by the fire block chain coins Institute, author: Yuan Yuming, Hu Zhiwei, PDF version please read the original text download
Summary
The Fire Coin Blockchain Application Research Institute conducts research on distributed ledger technology based on directed acyclic graph (DAG) data structure from a technical perspective, and through the specific technical test of typical representative project IOTA, the main research results are obtained:
Report body
1 Introduction
Blockchain is a distributed ledger technology, and distributed ledger technology is not limited to the "blockchain" technology. In the wave of digital economic development, more distributed ledger technology is being explored and applied in order to improve the original technology and meet more practical business application scenarios. Directed Acylic Graph (hereinafter referred to as "DAG") is one of the representatives.
What is DAG technology and the design behind it? What is the actual application effect?We attempted to obtain analytical conclusions through deep analysis of DAG technology and actual test runs of representative project IOTA.
It should also be noted that the results of the indicator data obtained from the test are not and should not be considered as proof or confirmation of the final effect of the IOTA platform or project. Hereby declare.
2. Main conclusions
After research and test analysis, we have the following main conclusions and technical recommendations:
3.DAG Introduction
3.1. Introduction to DAG Principle
DAG (Directed Acyclic Graph) is a data structure that represents a directed graph, and in this graph, it cannot return to this point (no loop) from any vertex, as shown in the figure. Shown as follows:
📷
After the DAG technology-based distributed ledger (hereinafter referred to as DAG) technology has been proposed in recent years, many people think that it is hopeful to replace the blockchain technology in the narrow sense. Because the goal of DAG at design time is to preserve the advantages of the blockchain and to improve the shortcomings of the blockchain.
Different from the traditional linear blockchain structure, the transaction record of the distributed ledger platform represented by IOTA forms a relational structure with a directed acyclic graph, as shown in the following figure.
📷
3.2. DAG characteristics
Due to the different data structure from the previous blockchain, the DAG-based distributed ledger technology has the characteristics of high scalability, high concurrency and is suitable for IoT scenarios.
3.2.1. High scalability, high concurrency
The data synchronization mechanism of traditional linear blockchains (such as Ethereum) is synchronous, which may cause network congestion. The DAG network adopts an asynchronous communication mechanism, allowing concurrent writing. Multiple nodes can simultaneously trade at different tempos without having a clear sequence. Therefore, the data of the network may be inconsistent at the same time, but it will eventually be synchronized.

3.2.2. Applicable to IoT scenarios

In the traditional blockchain network, there are many transactions in each block. The miners are packaged and sent uniformly, involving multiple users. In the DAG network, there is no concept of “block”, the smallest unit of the network. It is a "transaction", each new transaction needs to verify the first two transactions, so the DAG network does not need miners to pass the trust, transfer does not require a fee, which makes DAG technology suitable for small payments.
4. Analysis of technical ideas
Trilemma, or "trilemma", means that in a particular situation, only two of the three advantageous options can be selected or one of the three adverse choices must be chosen. This type of selection dilemma has related cases in various fields such as religion, law, philosophy, economics, and business management.Blockchain is no exception. The impossible triangle in the blockchain is: Scalability, Decentralization, and Security can only choose two of them.
If you analyze DAG technology according to this idea, according to the previous introduction, then DAG has undoubtedly occupied the two aspects of decentralization and scalability. The decentralization and scalability of the DAG can be considered as two-sided, because of the asynchronous accounting features brought about by the DAG data structure, while achieving the high degree of decentralization of the participating network nodes and the scalability of the transaction.
5. There is a problem
Since the characteristics of the data structure bring decentralization and scalability at the same time, it is speculated that the security is a hidden danger according to the theory of impossible triangles. But because DAG is a relatively innovative and special structure, can it be more perfect to achieve security? This is not the case from the actual results.
5.1. Double flower problem
The characteristics of DAG asynchronous communication make it possible for a double-flower attack. For example, an attacker adds two conflicting transactions (double spending) at two different locations on the network, and the transactions are continuously forward-checked in the network until they appear on the verification path of the same transaction, and the network discovers the conflict. At this time, the common ancestor nodes that the two transactions are gathered together can determine which transaction is a double-flower attack.
If the trading path is too short, there will be a problem like "Blowball": when most transactions are "lazy" in extreme cases, only the early trading, the trading network will form a minority. Early transactions are the core central topology. This is not a good thing for DAGs that rely on ever-increasing transactions to increase network reliability.
Therefore, at present, for the double flower problem, it is necessary to comprehensively consider the actual situation for design. Different DAG networks have their own solutions.
5.2. Shadow chain problem
Due to the potential problem of double flowers, when an attacker can build a sufficient number of transactions, it is possible to fork a fraudulent branch (shadow chain) from the real network data, which contains a double flower transaction, and then this The branch is merged into the DAG network, and in this case it is possible for this branch to replace the original transaction data.
6. Introduction to the current improvement plan
At present, the project mainly guarantees safety by sacrificing the native characteristics of some DAGs.
The IOTA project uses the Markov chain Monte Carlo (MCMC) approach to solve this problem. The IOTA introduces the concept of Cumulative Weight for transactions to record the number of times the transaction has been cited in order to indicate the importance of its transaction. The MCMC algorithm selects the existing transactions in the current network as a reference for the newly added transactions by weighting the random weights of the accumulated weights. That is, the more referenced the transaction path, the easier it is to be selected by the algorithm. The walk strategy has also been optimized in version 1.5.0 to control the "width" of the transaction topology to a reasonable range, making the network more secure.
However, at the beginning of the platform startup, due to the limited number of participating nodes and transactions, it is difficult to prevent a malicious organization from sending a large number of malicious transactions through a large number of nodes to cause the entire network to be attacked by the shadow chain. Therefore, an authoritative arbitration institution is needed to determine the validity of the transaction. In IOTA, this node is a Coordinator, which periodically snapshots the current transaction data network (Tangle); the transactions contained in the snapshot are confirmed as valid transactions. But Coordinator doesn't always exist. As the entire network runs and grows, IOTA will cancel the Coordinator at some point in the future.
The Byteball improvement program features its design for the witness and the main chain. Because the structure of DAG brings a lot of transactions with partial order, and to avoid double flowers, it is necessary to establish a full order relationship for these transactions to form a transaction backbone. An earlier transaction on the main chain is considered a valid transaction.Witnesses, who are held by well-known users or institutions, form a main chain by constantly sending transactions to confirm other user transactions.
The above scheme may also bring different changes to the platform based on the DAG structure. Taking IOTA as an example, because of the introduction of Coordinator, the decentralization characteristics are reduced to some extent.
7. Actual operation
7.1. Positive effects
In addition to solving security problems, the above solutions can also solve the smart contract problem to some extent.
Due to the two potential problems caused by the native features of DAG: (1) The transaction duration is uncontrollable. The current mechanism for requesting retransmission requires some complicated timeout mechanism design on the client side, hoping for a simple one-time confirmation mechanism. (2) There is no global sorting mechanism, which results in limited types of operations supported by the system. Therefore, on the distributed ledger platform based on DAG technology, it is difficult to implement Turing's complete intelligent contract system.
In order to ensure that the smart contract can run, an organization is needed to do the above work. The current Coordinator or main chain can achieve similar results.
7.2. Negative effects
As one of the most intuitive indicators, DAG's TPS should theoretically be unlimited. If the maximum TPS of the IOTA platform is compared to the capacity of a factory, then the daily operation of TPS is the daily production of the plant.
For the largest TPS, the April 2017 IOTA stress test showed that the network had transaction processing capabilities of 112 CTPS and 895 TPS. This is the result of a small test network consisting of 250 nodes.
For the daily operation of TPS, from the data that is currently publicly available, the average TPS of the main network in the near future is about 8.2, and the CTPS (the number of confirmed transactions per second) is about 2.7.
📷
The average average TPS of the test network is about 4, and the CTPS is about 3.
📷
Data source discord bot: generic-iota-bot#5760
Is this related to the existence of Coordinator? Actual testing is needed to further demonstrate.
8. Measured analysis
The operational statistics of the open test network are related to many factors.For further analysis, we continue to use the IOTA platform as an example to build a private test environment for technical measurement analysis.
8.1. Test Architecture
The relationship between the components we built this test is shown below.
📷
among them:
8.2. Testing the hardware environment
The server uses Amazon AWS EC2 C5.4xlarge: 16 core 3GHz, Intel Xeon Platinum 8124M CPU, 32GB memory, 10Gbps LAN network between servers, communication delay (ping) is less than 1ms, operating system is Ubuntu 16.04.
8.3. Test scenarios and results analysis

8.3.1. Default PoW Difficulty Value

Although there is no concept such as “miners”, the IOTA node still needs to prove the workload before sending the transaction to avoid sending a large number of transactions to flood the network. The Minimum Weight Magnitude is similar to Bitcoin. The result of PoW should be the number of digits of "9", 9 of which is "000" in the ternary used by IOTA. The IOTA difficulty value can be set before the node is started.
Currently for the production network, the difficulty value of the IOTA is set to 14; the test network is set to 9. Therefore, we first use the test network's default difficulty value of 9 to test, get the following test results.
📷
Since each IOTA's bundle contains multiple transfers, the actual processed TPS will be higher than the send rate. But by executing the script that parses zmq, it can be observed that the current TPS is very low. Another phenomenon is that the number of requests that can be sent successfully per second is also low.
After analysis, the reason is that the test uses VPS, so in PoW, the CPU is mainly used for calculation, so the transaction speed is mainly affected by the transmission speed.

8.3.2. Decrease the PoW difficulty value

Re-test the difficulty value to 1 and get the following results.
📷
As can be seen from the results, TPS will increase after the difficulty is reduced. Therefore, the current TPS of the IOTA project does not reach the bottleneck where the Coordinator is located, but mainly because of the hardware and network of the client itself that sends the transaction. The IOTA community is currently working on the implementation of FPGA-based Curl algorithm and CPU instruction set optimization. Our test results also confirm that we can continue to explore the performance potential of the DAG platform in this way.

8.3.3. Reduce the number of test network nodes

Due to the characteristics of DAG, the actual TPS of the platform and the number of network nodes may also be related. Therefore, when the difficulty value is kept at 1, the number of network nodes is reduced to 10 and the test is repeated to obtain the following results.
📷
As can be seen from the results, as the number of nodes decreases, the actual processing of TPS also decreases, and is lower than the transmission rate. This shows that in a DAG environment, maintaining a sufficient size node will facilitate the processing of the transaction.
9. Reference materials
Https://www.iota.org/
https://en.wikipedia.org/wiki/Trilemma
Https://blog.iota.org/new-tip-selection-algorithm-in-iri-1-5-0-61294c1df6f1
https://en.wikipedia.org/wiki/Markov\_chain\_Monte\_Carlo
Https://byteball.org/
Https://www.iotachina.com/iota.html
Https://www.iotachina.com/iota\_tutorial\_1.html
submitted by i0tal0ver to Iota [link] [comments]

New to r/Tokenmining? click here for more in-depth info!

What is EIP:918?

EIP:918 is an Ethereum Improvement Proposal for standardizing mineable token distribution using Proof of Work.
The primary driver behind the standard is to address the very broken ICO model that currently plagues the Ethereum network. Token distribution via the ICO model and it’s derivatives has always been susceptible to illicit behavior by bad actors. New token projects are centralized by nature because a single entity must handle and control all of the initial coins and all of the the raised ICO money. By distributing tokens via an alternative ‘Initial Mining Offering’ (or IMO), the ownership of the token contract no longer belongs with the deployer at all and the deployer is ‘just another user.’ As a result, investor risk exposure utilizing a mined token distribution model is significantly diminished. This standard is intended to be standalone, allowing maximum interoperability with ERC20, ERC721, and future token standards.
The most effective economic side effect of Satoshi Nakamoto’s desire to secure the original Bitcoin network with Proof of Work hash mining was tethering the coin to real computing power, thereby removing centralized actors. Transitioning the responsibility of work back onto individual miners, government organizations have no jurisdiction over the operation of a pure mined token economy. Oversight is removed from an equation whereby miners are providing economic effort in direct exchange of a cryptographic commodity. This facilitates decentralized distribution and establishes all involved parties as stakeholders. The ERC918 standard allows projects to be funded through decentralized computing power instead of centralized, direct-fiat conversion.
The Ethereum blockchain in its current state exists as a thriving ecosystem which allows any individual to store immutable records in a permission-less, invulnerable and transparent manner. Recently, there have been proposals to mitigate some initial ICO investment risks through the introduction of the DAICO model that relies on timed and automated value transfers via the smart contract tapping mechanism. However, this does not align a token smart contract as a non-security and still has the potential to put investors at risk if not implemented carefully, relying on centralized actors to be fair and community intended. Allowing users of the network direct access to tokens by performing computations as a proof of work supplies allows any smart contract to distribute a token in a safe and controlled manner similar to the release of a commodity.
As of 2017, all Ethereum token distribution methods were flawed and susceptible to Sybil attacks. A Sybil attack is a form of computer security attack where one person pretends to be many people with multiple computer accounts in order to manipulate a system in a malicious way. ICOs and airdrops are highly susceptible to these type of attacks so there is no way to verify that all ERC20 tokens distributed by the deployer were doled out fairly or unfairly. Proof of Work distribution is resistant to Sybil attacks. This means that ERC918 tokens are among the first trustless Ethereum tokens in the world. The distribution of ERC918 tokens is fair because they are allotted via an open, decentralized mathematical algorithm (that anyone can view on the mainnet blockchain) and not a centralized human monarchy.
ERC918’s first incarnation (and inspiration) was the 0xBitcoin project that launched in early 2018. Since then, several projects have realized the standard in innovative and creative ways. Catether (0xCATE) erupted early and additionally mints payback tokens during transfer operations to offset gas costs. 0xGold and 0xLitecoin each implement the first on-chain merge-mining with 0xBitcoin and the Mineable Gem project extends the standard onto a non-fungible collectible artifacts, whereby each gem has a unique mining difficulty. The Mineable project is a newer initiative that provides users with the ability to create mineable ERC20 tokens on-chain without writing a line of code and includes a virtualized hashing artifact market that allows miners to purchase on-chain vGPUs to improve mining difficulty and rewards. (written by jlogelin) ​

MINING IN A NUTSHELL

0xBitcoin is a Smart Contract on the Ethereum network, and the concept of Token Mining is patterned after Bitcoin's distribution. Rather than solving 'blocks', work is issued by the contract, which also maintains a Difficulty which goes up or down depending on how often a Reward is issued. Miners can put their hardware to work to claim these rewards, in concert with specialized software, working either by themselves or together as a Pool. The total lifetime supply of 0xBitcoin is 21,000,000 tokens and rewards will repeatedly halve over time.
The 0xBitcoin contract was deployed by Infernal_Toast at Ethereum address: 0xb6ed7644c69416d67b522e20bc294a9a9b405b31
0xBitcoin's smart contract, running on the Ethereum network, maintains a changing "Challenge" (that is generated from the previous Ethereum block hash) and an adjusting Difficulty Target. Like traditional mining, the miners use the SoliditySHA3 algorithm to solve for a Nonce value that, when hashed alongside the current Challenge and their Minting Ethereum Address, is less-than-or-equal-to the current Difficulty Target. Once a miner finds a solution that satisfies the requirements, they can submit it into the contract (calling the Mint() function). This is most often done through a mining pool. The Ethereum address that submits a valid solution first is sent the 50 0xBTC Reward.
(In the case of Pools, valid solutions that do not satisfy the full difficulty specified by the 0xBitcoin contract, but that DO satisfy the Pool's specified Minimum Share Difficulty, get a 'share'. When one of the Miners on that Pool finds a "Full" solution, the number of shares each miner's address has submitted is used to calculate how much of the 50 0xBTC reward they will get. After a Reward is issued, the Challenge changes.
A Retarget happens every 1024 rewards. In short, the Contract tries to target an Average Reward Time of about 60 times the Ethereum block time. So (at the time of this writing):
~13.9 seconds \* 60 = 13.9 minutes
If the average Reward Time is longer than that, the difficulty will decrease. If it's shorter, it will increase. How much longer or shorter it was affects the magnitude with which the difficulty will rise/drop, to a maximum of 50%. * Click Here to visit the stats page~ (https://0x1d00ffff.github.io/0xBTC-Stats) to see recent stats and block times, feel free to ask questions about it if you need help understanding it.

MINING HARDWARE

Presently, 0xBitcoin and "Alt Tokens" can be mined on GPUs, CPUs, IGPs (on-CPU graphics) and certain FPGAs. The most recommended hardware is nVidia graphics cards for their efficiency, ubiquity and relatively low cost. As general rules, the more cores and the higher core frequency (clock) you can get, the more Tokens you will earn!
Mining on nVidia cards:
Mining on AMD cards:
Mining on IGPs (e.g. AMD Radeon and Intel HD Graphics):
Clocks and Power Levels:

MINING SOFTWARE AND DESCRIPTIONS

For the most up-to-date version info, download links, thread links and author contact information, please see this thread: https://www.reddit.com/0xbitcoin/comments/8o06dk/links_to_the_newestbest_miners_for_nvidia_amd/ Keep up to date for the latest speed, stability and feature enhancements!
COSMiC Miner by LtTofu:
SoliditySha3Miner by Amano7:
AIOMiner All-In-One GPU Miner:
TokenMiner by MVis (Mining-Visualizer):
"Nabiki"/2.10.4 by Azlehria:
~Older Miners: Older and possibly-unsupported miner versions can be found at the above link for historical purposes and specific applications- including the original NodeJS CPU miner by Infernal Toast/Zegordo, the '1000x' NodeJS/C++ hybrid version of 0xBitcoin-Miner and Mikers' enhanced CUDA builds.

FOR MORE INFORMATION...

If you have any trouble, the friendly and helpful 0xBitcoin community will be happy to help you out. Discord has kind of become 0xBTC's community hub, you can get answers the fastest from devs and helpful community members. Or message one of the community members on reddit listed below.
Links
submitted by GeoffedUP to Tokenmining [link] [comments]

Skycoin Meshnet Project: Skywire Updates

The wifi controller library is now on Github. Its working on Ubuntu and possibly Debian.
Non-Mesh Stuff:
We still have a lot of work to do, but have been making very good progress.
submitted by skycoin to darknetplan [link] [comments]

Open-Source-FPGA-Bitcoin-Miner . A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. CGMiner — The most popular miner for GPU / FPGA / ASIC, CGminer is an open source GPU miner written in C and available on several platforms such as Windows, Linux and OS X. One of the things that make it extremely popular is the fact that it is based on the original Cpu Miner code. CGMiner It includes overclocking, monitoring, fan speed control and remote interface features. The FPGA boards supported by BTCMiner (USB-FPGA Modules 1.15b and 1.15d, USB-FPGA Modules 1.15x and USB-FPGA Modules 1.15y.) have a USB interface, which can be open source fpga bitcoin miner master used for communication and programming, allowing the user to build low cost FPGA clusters with standard components (like USB hubs, for instance). Download CGMiner v4.1.11 (open source Bitcoin Miner for GPU/FPGA/ASIC) CGMiner includes overclocking, monitoring, fan speed control and remote interface features. Other features include self-discovery of new blocks using a mini-database, binary cores, multi-GPU support, and processor mining support. A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. A binary release is currently available for the Terasic DE2-115 Development Board, and there are compile-able projects for numerous boards. - fpgaminer/Open ...

[index] [18510] [24134] [25220] [20373] [21470] [14619] [25078] [21162] [23884] [771]

#